Learning the Graph of Relations Among Multiple Tasks
نویسنده
چکیده
We propose multitask Laplacian learning, a new method for jointly learning clusters of closely related tasks. Unlike standard multitask methodologies, the graph of relations among the tasks is not assumed to be known a priori, but is learned by the multitask Laplacian algorithm. The algorithm builds on kernel based methods and exploits an optimization approach for learning a continuously parameterized kernel. It involves solving a semidefinite program of a particular type, for which we develop an algorithm based on Douglas-Rachford splitting methods. Multitask Laplacian learning can find application in many cases in which tasks are related with each other to varying degrees, some strongly, others weakly. Our experiments highlight such cases in which multitask Laplacian learning outperforms independent learning of tasks and state of the art multitask learning methods. In addition, they demonstrate that our algorithm partitions the tasks into clusters each of which contains well correlated tasks.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملThe Effect of Multiple Intelligence-Oriented Thematic Clustering on Advanced EFL Learners’ Vocabulary Learning
Burgeoning research in applied linguistics has underscored the interplay among individual, cognitive, and social variables that can delineate the ultimate attainment in various areas including vocabulary learning and the need to explore how innovative conflation of these dimensions may promote learning outcomes. The present quasi-experimental study examined the impact of Thematic Vocabulary Ins...
متن کاملLearning on Partial-Order Hypergraphs
Graph-based learning methods explicitly consider the relations between two entities (i.e., vertices) for learning the prediction function. They have been widely used in semi-supervised learning, manifold ranking, and clustering, among other tasks. Enhancing the expressiveness of simple graphs, hypergraphs formulate an edge as a link to multiple vertices, so as to model the higher-order relation...
متن کاملL2 Vocabulary Learning and the Use of Reading Tasks: Manipulating the Involvement Load Index
As Schmidt (2008) states, deeper engagement with new vocabulary as induced by tasks clearly increases the chances of learning those words. This engagement is theoretically clarified by the involvement load hypothesis (ILH, Laufer and Hulstijn, 2001), based on which the involvement index of each task can be measured. The present study was designed to test ILH by evaluating the impact of 4 differ...
متن کاملL2 Vocabulary Learning and the Use of Reading Tasks: Manipulating the Involvement Load Index
As Schmidt (2008) states, deeper engagement with new vocabulary as induced by tasks clearly increases the chances of learning those words. This engagement is theoretically clarified by the involvement load hypothesis (ILH, Laufer and Hulstijn, 2001), based on which the involvement index of each task can be measured. The present study was designed to test ILH by evaluating the impact of 4 differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014